Chapter 6: Thermochemistry

1. Radiant energy is
A) the energy stored within the structural units of chemical substances.
B) the energy associated with the random motion of atoms and molecules.
C) solar energy, i.e. energy that comes from the sun.
D) energy available by virtue of an object's position.

Ans: C Category: Easy Section: 6.1
2. Thermal energy is
A) the energy stored within the structural units of chemical substances.
B) the energy associated with the random motion of atoms and molecules.
C) solar energy, i.e. energy that comes from the sun.
D) energy available by virtue of an object's position.

Ans: B Category: Easy Section: 6.1
3. Chemical energy is
A) the energy stored within the structural units of chemical substances.
B) the energy associated with the random motion of atoms and molecules.
C) solar energy, i.e. energy that come s from the sun.
D) energy available by virtue of an object's position.

Ans: A Category: Easy Section: 6.1
4. Potential energy is
A) the energy stored within the structural units of chemical substances.
B) the energy associated with the random motion of atoms and molecules.
C) solar energy, i.e. energy that comes from the sun.
D) energy available by virtue of an object's position.

Ans: D Category: Easy Section: 6.1
5. Heat is
A) a measure of temperature.
B) a measure of the change in temperature.
C) a measure of thermal energy.
D) a measure of thermal energy transferred between two bodies at different temperature.
Ans: D Category: Medium Section: 6.2
6. An endothermic reaction causes the surroundings to
A) warm up.
D) decrease in temperature.
B) become acidic.
E) release CO_{2}.
C) condense.

Ans: D Category: Easy Section: 6.2
7. An exothermic reaction causes the surroundings to
A) warm up.
D) decrease its temperature.
B) become acidic.
E) release CO_{2}.
C) expand.

Ans: A Category: Easy Section: 6.2
8. Copper metal has a specific heat of $0.385 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. Calculate the amount of heat required to raise the temperature of 22.8 g of Cu from $20.0^{\circ} \mathrm{C}$ to $875^{\circ} \mathrm{C}$.
A) $1.97 \times 10^{-5} \mathrm{~J}$
B) $1.0 \times 10^{-2} \mathrm{~J}$
C) 329 J
D) 7.51 kJ
E) 10.5 kJ

Ans: D Category: Medium Section: 6.5
9. Calculate the amount of heat necessary to raise the temperature of 12.0 g of water from $15.4^{\circ} \mathrm{C}$ to $93.0^{\circ} \mathrm{C}$. The specific heat of water $=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
A) 0.027 J
B) 324 J
C) 389 J
D) 931 J
E) $3,890 \mathrm{~J}$

Ans: E Category: Medium Section: 6.5
10. How much heat is required to raise the temperature of $2,500 \mathrm{~g}$ of water from $27^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$? The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
A) 0.19 kJ
B) $10 . \mathrm{kJ}$
C) 280 kJ
D) 470 kJ
E) 750 kJ

Ans: D Category: Medium Section: 6.5
11. A beaker contains 115 g of ethanol at $18.2^{\circ} \mathrm{C}$. If the ethanol absorbs 1125 J of heat without losing heat to the surroundings, what will be the final temperature of the ethanol? The specific heat of ethanol is $2.46 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
A) $4.08^{\circ} \mathrm{C}$
B) $14.1^{\circ} \mathrm{C}$
C) $18.4^{\circ} \mathrm{C}$
D) $22.2^{\circ} \mathrm{C}$
E) $36.4^{\circ} \mathrm{C}$

Ans: D Category: Medium Section: 6.5
12. How many degrees of temperature rise will occur when a 25.0 g block of aluminum absorbs 10.0 kJ of heat? The specific heat of Al is $0.900 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
A) $0.44^{\circ} \mathrm{C}$
B) $22.5^{\circ} \mathrm{C}$
C) $225^{\circ} \mathrm{C}$
D) $360^{\circ} \mathrm{C}$
E) $444^{\circ} \mathrm{C}$

Ans: E Category: Medium Section: 6.5
13. If 325 g of water at $4.2^{\circ} \mathrm{C}$ absorbs 12.28 kJ , what is the final temperature of the water? The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
A) $4.21^{\circ} \mathrm{C}$
B) $4.8^{\circ} \mathrm{C}$
C) $9.0^{\circ} \mathrm{C}$
D) $13.2^{\circ} \mathrm{C}$
E) $2,938^{\circ} \mathrm{C}$

Ans: D Category: Medium Section: 6.5
14. A glass containing 200. g of $\mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$ was placed in a refrigerator. The water loses 11.7 kJ as it cools to a constant temperature. What is its new temperature? The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
A) $0.013^{\circ} \mathrm{C}$
B) $4^{\circ} \mathrm{C}$
C) $6^{\circ} \mathrm{C}$
D) $14^{\circ} \mathrm{C}$
E) $34^{\circ} \mathrm{C}$

Ans: C Category: Medium Section: 6.5
15. A piece of copper with a mass of 218 g has a heat capacity of $83.9 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. What is the specific heat of copper?
A) $\quad 0.385 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
B) $1.83 \times 10^{4} \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
D) $\quad 1.32 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
E) $\quad 24.5 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
C) $\quad 2.60 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

Ans: A Category: Easy Section: 6.5
16. The specific heat of gold is $0.129 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. What is the molar heat capacity of gold?
A) $0.039 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ}{ }^{\circ} \mathrm{C}$
B) $\quad 0.129 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$
D) $\quad 39.0 \mathrm{~kJ} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$
E) $\quad 197 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$
C) $\quad 25.4 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$

Ans: C Category: Easy Section: 6.5
17. Suppose a 50.0 g block of silver (specific heat $=0.2350 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$) at $100^{\circ} \mathrm{C}$ is placed in contact with a 50.0 g block of iron (specific heat $=0.4494 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$) at $0^{\circ} \mathrm{C}$, and the two blocks are insulated from the rest of the universe. The final temperature of the two blocks
A) will be higher than $50^{\circ} \mathrm{C}$.
B) will be lower than $50^{\circ} \mathrm{C}$.
C) will be exactly $50^{\circ} \mathrm{C}$.
D) is unrelated to the composition of the blocks.
E) cannot be predicted.

Ans: B Category: Medium Section: 6.5
18. When 0.7521 g of benzoic acid was burned in a calorimeter containing $1,000 \mathrm{~g}$ of water, a temperature rise of $3.60^{\circ} \mathrm{C}$ was observed. What is the heat capacity of the bomb calorimeter, excluding the water? The heat of combustion of benzoic acid is $-26.42 \mathrm{~kJ} / \mathrm{g}$.
A) $15.87 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
B) $\quad 4.18 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
D) $\quad 1.34 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
E) $\quad 752.1 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
C) $\quad 5.52 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$

Ans: D Category: Medium Section: 6.5
19. Naphthalene combustion can be used to calibrate the heat capacity of a bomb calorimeter. The heat of combustion of naphthalene is $-40.1 \mathrm{~kJ} / \mathrm{g}$. When 0.8210 g of naphthalene was burned in a calorimeter containing 1,000 . g of water, a temperature rise of $4.21^{\circ} \mathrm{C}$ was observed. What is the heat capacity of the bomb calorimeter excluding the water?
A) $32.9 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
B) $7.8 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
C) $3.64 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
D) $1.76 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
E) $15.3 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$

Ans: C Category: Medium Section: 6.5
20. Which of the following processes is endothermic?
A) $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C) $3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Ans: D Category: Medium Section: 6.4
21. A $100 . \mathrm{mL}$ sample of 0.200 M aqueous hydrochloric acid is added to 100 mL of 0.200 M aqueous ammonia in a calorimeter whose heat capacity (excluding any water) is $480 \mathrm{~J} / \mathrm{K}$. The following reaction occurs when the two solutions are mixed.
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$
The temperature increase is $2.34^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ per mole of HCl and NH_{3} reacted.
A) $154 \mathrm{~kJ} / \mathrm{mol}$
B) $1.96 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-1.96 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-154 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 485 \mathrm{~kJ} / \mathrm{mol}$

Ans: E Category: Difficult Section: 6.5
22. A 0.1326 g sample of magnesium was burned in an oxygen bomb calorimeter. The total heat capacity of the calorimeter plus water was $5,760 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. If the temperature rise of the calorimeter with water was $0.570^{\circ} \mathrm{C}$, calculate the enthalpy of combustion of magnesium. $\mathrm{Mg}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$
A) $\quad-3280 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-24.8 \mathrm{~kJ} / \mathrm{mol}$
D) $106 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-602 \mathrm{~kJ} / \mathrm{mol}$
C) $435 \mathrm{~kJ} / \mathrm{mol}$

Ans: E Category: Difficult Section: 6.5
23. To which one of the following reactions occurring at $25^{\circ} \mathrm{C}$ does the symbol $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})\right]$ refer?
A) $\quad 2 \mathrm{H}(\mathrm{g})+\mathrm{S}(\mathrm{g})+4 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
D) $\quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{H}(\mathrm{g})+\mathrm{S}(\mathrm{s})+4 \mathrm{O}(\mathrm{g})$
B) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
E) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
C) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g})$
Ans: E Category: Medium Section: 6.6
24. To which one of the following reactions occurring at $25^{\circ} \mathrm{C}$ does the symbol $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{HNO}_{3}(\mathrm{l})\right]$ refer?
A) $\mathrm{H}(\mathrm{g})+\mathrm{N}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{HNO}_{3}(\mathrm{l})$
B) $(1 / 2) \mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{N}_{2}(\mathrm{~g})+(3 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{HNO}_{3}(\mathrm{l})$
C) $\quad \mathrm{HNO}_{3}(\mathrm{l}) \rightarrow(1 / 2) \mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{N}_{2}(\mathrm{~g})+(3 / 2) \mathrm{O}_{2}(\mathrm{~g})$
D) $\quad \mathrm{HNO}_{3}(\mathrm{l}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{N}(\mathrm{g})+3 \mathrm{O}(\mathrm{g})$
E) $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{HNO}_{3}(\mathrm{l})$

Ans: B Category: Medium Section: 6.6
25. When 0.560 g of $\mathrm{Na}(\mathrm{s})$ reacts with excess $\mathrm{F}_{2}(\mathrm{~g})$ to form $\mathrm{NaF}(\mathrm{s}), 13.8 \mathrm{~kJ}$ of heat is evolved at standard-state conditions. What is the standard enthalpy of formation $\left(\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\right)$ of NaF (s)?
A) $\quad 24.8 \mathrm{~kJ} / \mathrm{mol}$
B) $570 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-7.8 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-570 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-24.8 \mathrm{~kJ} / \mathrm{mol}$

Ans: E Category: Medium Section: 6.6
26. When 18.5 g of $\mathrm{HgO}(\mathrm{s})$ is decomposed to form $\mathrm{Hg}(\mathrm{l})$ and $\mathrm{O}_{2}(\mathrm{~g}), 7.75 \mathrm{~kJ}$ of heat is absorbed at standard-state conditions. What is the standard enthalpy of formation $\left(\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\right)$ of $\mathrm{HgO}(\mathrm{s})$?
A) $\quad-90.7 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-7.75 \mathrm{~kJ} / \mathrm{mol}$
C) $0.419 \mathrm{~kJ} / \mathrm{mol}$
D) $27.9 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 143 \mathrm{~kJ} / \mathrm{mol}$

Ans: A Category: Medium Section: 6.6
27. Ethanol undergoes combustion in oxygen to produce carbon dioxide gas and liquid water. The standard heat of combustion of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$, is $-1366.8 \mathrm{~kJ} / \mathrm{mol}$. Given that $\Delta \mathrm{H}^{\circ}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$, what is the standard enthalpy of formation of ethanol?
A) $3,010 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-687.6 \mathrm{~kJ} / \mathrm{mol}$
D) $687.6 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 1,367 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-277.6 \mathrm{~kJ} / \mathrm{mol}$

Ans: C Category: Difficult Section: 6.6
28. Find the standard enthalpy of formation of ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$, given the following data: heat of combustion of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})=-1411 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$; $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$.
A) $\quad 52 \mathrm{~kJ} / \mathrm{mol}$
B) $87 \mathrm{~kJ} / \mathrm{mol}$
D) $1.41 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 2.77 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$
C) $731 \mathrm{~kJ} / \mathrm{mol}$

Ans: A Category: Difficult Section: 6.6
29. Octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ undergoes combustion according to the following thermochemical equation:
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-11,020 \mathrm{~kJ} / \mathrm{mol}$.
Given that $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$, calculate the standard enthalpy of formation of octane.
A) $\quad-210 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-11,230 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-420 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 420 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 22,040 \mathrm{~kJ} / \mathrm{mol}$

Ans: A Category: Medium Section: 6.6
30. Glycine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}$, is important for biological energy. The combustion reaction of glycine is given by the equation
$4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}(\mathrm{~s})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{~N}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-3857 \mathrm{~kJ} / \mathrm{mol}$
Given that $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$, calculate the enthalpy of formation of glycine.
A) $\quad-537.2 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-268.2 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-3,178 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-964 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 2,149 \mathrm{~kJ} / \mathrm{mol}$

Ans: A Category: Medium Section: 6.6
31. Styrene, $\mathrm{C}_{8} \mathrm{H}_{8}$, is one of the substances used in the production of synthetic rubber. When styrene burns in oxygen to form carbon dioxide and liquid water under standard-state conditions at $25^{\circ} \mathrm{C}, 42.62 \mathrm{~kJ}$ are released per gram of styrene. Find the standard enthalpy of formation of styrene at $25^{\circ} \mathrm{C}$.
(Given: $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=$ $-241.8 \mathrm{~kJ} / \mathrm{mol}$)
A) $\quad 323.8 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad \sim 4249 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad \sim 636.7 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 147.8 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad \sim 8730 \mathrm{~kJ} / \mathrm{mol}$

Ans: E Category: Difficult Section: 6.6
32. Given $2 \mathrm{Al}(\mathrm{s})+(3 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-1,670 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$.

Determine $\Delta \mathrm{H}^{\circ}$ for the reaction $2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$.
A) $\quad 3,340 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad 1,670 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-1,670 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-835 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-3,340 \mathrm{~kJ} / \mathrm{mol}$

Ans: A Category: Easy Section: 6.6
33. Calculate the standard enthalpy of formation of liquid methanol, $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$, using the following information:

$\mathrm{C}(\mathrm{graph})+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\Delta \mathrm{H}^{\circ}=-285.8 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+(3 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\Delta \mathrm{H}^{\circ}=-726.4 \mathrm{~kJ} / \mathrm{mol}$

A) $\quad-1,691.5 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-238.7 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad 47.1 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-47.1 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 1691.5 \mathrm{~kJ} / \mathrm{mol}$

Ans: B Category: Difficult Section: 6.6
34. Calculate the standard enthalpy change for the reaction
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+17 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}(\mathrm{g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
Given:
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-11,020 \mathrm{~kJ} / \mathrm{mol}$
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}^{\circ}=-566.0 \mathrm{~kJ} / \mathrm{mol}$
A) $\quad 10,450 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-6,492 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad 6,492 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-10.450 \mathrm{~kJ} / \mathrm{mol}$
C) $15,550 \mathrm{~kJ} / \mathrm{mol}$

Ans: D Category: Medium Section: 6.6
35. During volcanic eruptions, hydrogen sulfide gas is given off and oxidized by air according to the following chemical equation:
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Calculate the standard enthalpy change for the above reaction given:
$3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=146.9 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-296.4 \mathrm{~kJ} / \mathrm{mol}$
A) $\quad-1036.1 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-742.3 \mathrm{~kJ} / \mathrm{mol}$
D) $443.3 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 742.3 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-149.5 \mathrm{~kJ} / \mathrm{mol}$

Ans: A Category: Medium Section: 6.6
36. Calculate the standard enthalpy change for the reaction
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+21 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}(\mathrm{g})+8 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
Given:
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-11,020 \mathrm{~kJ} / \mathrm{mol}$
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}^{\circ}=-566.0 \mathrm{~kJ} / \mathrm{mol}$
A) $1.0454 \times 10^{4} \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-6,492 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-8,756 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-1.0454 \times 10^{4} \mathrm{~kJ} / \mathrm{mol}$
C) $1.1586 \times 10^{4} \mathrm{~kJ} / \mathrm{mol}$

Ans: B Category: Medium Section: 6.6
37. Given the thermochemical equation $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}, \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-198 \mathrm{~kJ} / \mathrm{mol}$, what is the standard enthalpy change for the decomposition of one mole of SO_{3} ?
A) $198 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-99 \mathrm{~kJ} / \mathrm{mol}$
D) $396 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-198 \mathrm{~kJ} / \mathrm{mol}$
C) $99 \mathrm{~kJ} / \mathrm{mol}$

Ans: C Category: Medium Section: 6.6
38. Given $\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}^{\circ}=-286 \mathrm{~kJ} / \mathrm{mol}$, determine the standard enthalpy change for the reaction $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$.
A) $\Delta \mathrm{H}^{\circ}=-286 \mathrm{~kJ} / \mathrm{mol}$
B) $\Delta \mathrm{H}^{\circ}=+286 \mathrm{~kJ} / \mathrm{mol}$
D) $\Delta \mathrm{H}^{\circ}=+572 \mathrm{~kJ} / \mathrm{mol}$
E) $\Delta \mathrm{H}^{\circ}=-143 \mathrm{~kJ} / \mathrm{mol}$
C) $\Delta \mathrm{H}^{\circ}=-572 \mathrm{~kJ} / \mathrm{mol}$

Ans: D Category: Easy Section: 6.6
39. Pentaborane $\mathrm{B}_{5} \mathrm{H}_{9}(\mathrm{~s})$ burns vigorously in O_{2} to give $\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. Calculate $\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}$ for the combustion of 1 mol of $\mathrm{B}_{5} \mathrm{H}_{9}$.
$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})\right]=-1,273.5 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\left[\mathrm{B}_{5} \mathrm{H}_{9}(\mathrm{~s})\right]=73.2 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$
A) $\quad-1,2735 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-4,543 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-9,086 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-8,448 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-18,170 \mathrm{~kJ} / \mathrm{mol}$

Ans: B Category: Difficult Section: 6.6
40. For the reaction

C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-393 \mathrm{~kJ} / \mathrm{mol}$
how many grams of C (graphite) must be burned to release 275 kJ of heat?
A) 22.3 g
B) 0.70 g
C) 12.0 g
D) 17.1 g
E) 8.40 g

Ans: E Category: Medium Section: 6.4
41. The combustion of butane produces heat according to the equation
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-5,314 \mathrm{~kJ} / \mathrm{mol}$
What is the heat of combustion per gram of butane?
A) $\quad-32.5 \mathrm{~kJ} / \mathrm{g}$
D) $\quad-2,656 \mathrm{~kJ} / \mathrm{g}$
B) $\quad-45.7 \mathrm{~kJ} / \mathrm{g}$
E) $\quad-15,440 \mathrm{~kJ} / \mathrm{g}$
C) $\quad-91.5 \mathrm{~kJ} / \mathrm{g}$

Ans: B Category: Medium Section: 6.4
42. The combustion of octane produces heat according to the equation $2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}{ }^{2}=-11,020 \mathrm{~kJ} / \mathrm{mol}$
What is the heat of combustion per gram of octane?
A) $\quad-5,510 \mathrm{~kJ} / \mathrm{g}$
B) $\quad-96.5 \mathrm{~kJ} / \mathrm{g}$
D) $\quad-193 \mathrm{~kJ} / \mathrm{g}$
E) $\quad-6.292 \times 10^{5} \mathrm{~kJ} / \mathrm{g}$
C) $\quad-48.2 \mathrm{~kJ} / \mathrm{g}$

Ans: C Category: Medium Section: 6.4
43. The combustion of butane produces heat according to the equation
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-5,314 \mathrm{~kJ} / \mathrm{mol}$
How many grams of butane must be burned to release $1.00 \times 10^{4} \mathrm{~kJ}$ of heat?
A) 30.9 g
B) 61.8 g
C) 109 g
D) 153 g
E) 219 g

Ans: E Category: Medium Section: 6.4
44. The combustion of butane produces heat according to the equation
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-5,314 \mathrm{~kJ} / \mathrm{mol}$ How many grams of CO_{2} are produced per $1.00 \times 10^{4} \mathrm{~kJ}$ of heat released?
A) 23.4 g
B) 44.0 g
C) 82.3 g
D) 187 g
E) 662 g

Ans: E Category: Medium Section: 6.4
45. Given that $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}), \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-64.8 \mathrm{~kJ} / \mathrm{mol}$, how many grams of CaO must react in order to liberate 525 kJ of heat?
A) 6.92 g
B) 56.1 g
C) 455 g
D) 606 g
E) $3.40 \times 10^{4} \mathrm{~g}$

Ans: C Category: Medium Section: 6.4
46. The combustion of pentane produces heat according to the equation
$\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-3,510 \mathrm{~kJ} / \mathrm{mol}$
How many grams of CO_{2} are produced per $2.50 \times 10^{3} \mathrm{~kJ}$ of heat released?
A) 0.0809 g
B) 3.56 g
C) 31.3 g
D) 157 g
E) 309 g

Ans: D Category: Medium Section: 6.4
47. An average home in Colorado requires 20. GJ of heat per month. How many grams of natural gas (methane) must be burned to supply this energy?
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-890.4 \mathrm{~kJ} / \mathrm{mol}$
A) $1.4 \times 10^{3} \mathrm{~g}$
B) $3.6 \times 10^{5} \mathrm{~g}$
D) $2.2 \times 10^{4} \mathrm{~g}$
E) $1.4 \times 10^{4} \mathrm{~g}$
C) $\quad 7.1 \times 10^{-4} \mathrm{~g}$

Ans: B Category: Medium Section: 6.4
48. Given the thermochemical equation $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}), \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-198 \mathrm{~kJ} / \mathrm{mol}$, how much heat is evolved when $600 . \mathrm{g}$ of SO_{2} is burned?
A) $5.46 \times 10^{-2} \mathrm{~kJ}$
B) 928 kJ
C) $1.85 \times 10^{3} \mathrm{~kJ}$
D) $\quad 59,400 \mathrm{~kJ}$
E) $\quad 3.71 \times 10^{3} \mathrm{~kJ}$

Ans: B Category: Medium Section: 6.4
49. Determine the heat given off to the surroundings when 9.0 g of aluminum reacts according to the equation $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-849 \mathrm{~kJ} / \mathrm{mol}$.
A) $7.6 \times 10^{3} \mathrm{~kJ}$
B) $2.8 \times 10^{2} \mathrm{~kJ}$
D) $5.6 \times 10^{2} \mathrm{~kJ}$
E) $\quad 2.5 \times 10^{3} \mathrm{~kJ}$
C) $1.4 \times 10^{2} \mathrm{~kJ}$

Ans: C Category: Medium Section: 6.4
50. Find the heat absorbed from the surroundings when 15 g of O_{2} reacts according to the equation $\mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{3}, \Delta \mathrm{H}_{\mathrm{rxn}}{ }^{\circ}=-103 \mathrm{~kJ} / \mathrm{mol}$.
A) $4.6 \times 10^{-3} \mathrm{~kJ}$
B) 48 kJ
C) 96 kJ
D) 32 kJ
E) 110 kJ

Ans: B Category: Medium Section: 6.4
51. Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ burns according to the equation
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-1367 \mathrm{~kJ} / \mathrm{mol}$.
How much heat is released when 35.0 g of ethanol is burned?
A) $1,797 \mathrm{~kJ}$
B) $1,367 \mathrm{~kJ}$
C) $9.61 \times 10^{-4} \mathrm{~kJ}$
D) $4.78 \times 10^{4} \mathrm{~kJ}$
E) $1,040 \mathrm{~kJ}$
Ans: E Category: Medium Section: 6.4
52. Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ burns according to the equation
$2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-1454 \mathrm{~kJ} / \mathrm{mol}$.
How much heat, in kilojoules, is given off when 75.0 g of methanol is burned?
A) 727 kJ
D) $1.70 \times 10^{-3} \mathrm{~kJ}$
B) $3.22 \times 10^{3} \mathrm{~kJ}$
E) $\quad 3.41 \times 10^{3} \mathrm{~kJ}$
C) $1.45 \times 10^{3} \mathrm{~kJ}$
Ans: D Category: Medium Section: 6.4
53. Calcium oxide and water react in an exothermic reaction:
$\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-64.8 \mathrm{~kJ} / \mathrm{mol}$
How much heat would be liberated when $7.15 \mathrm{~g} \mathrm{CaO}(\mathrm{s})$ is dropped into a beaker containing $152 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?
A) $1.97 \times 10^{-3} \mathrm{~kJ}$
B) 8.26 kJ
C) 508 kJ
D) 547 kJ
E) 555 kJ

Ans: B Category: Medium Section: 6.4
54. Solid sodium peroxide $\left(\mathrm{Na}_{2} \mathrm{O}_{2}\right)$ reacts with liquid water yielding aqueous sodium hydroxide and oxygen gas. How much heat is released when 250.0 L of oxygen gas is produced from the reaction of sodium peroxide and water if the reaction is carried out in an open container at 1.000 atm pressure and $25^{\circ} \mathrm{C}$?
(Given: $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})\right]=-510.9 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}^{\circ}[\mathrm{NaOH}(\mathrm{aq})]=-469.2 \mathrm{~kJ} / \mathrm{mol}$;
$\left.\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}\right)$
A) $35,400 \mathrm{~kJ}$
B) 1740 kJ
C) 141.7 kJ
D) 3330 kJ
E) 2900 kJ

Ans: E Category: Difficult Section: 6.6
55. At $25^{\circ} \mathrm{C}$, the standard enthalpy of formation of $\mathrm{KCl}(\mathrm{s})$ is $-435.87 \mathrm{~kJ} / \mathrm{mol}$. When one mole of $\mathrm{KCl}(\mathrm{s})$ is formed by reacting potassium vapor and chlorine gas at $25^{\circ} \mathrm{C}$, the standard enthalpy of reaction is $-525.86 \mathrm{~kJ} / \mathrm{mol}$. Find $\Delta \mathrm{H}^{\circ}$ for the sublimation of potassium, $\mathrm{K}(\mathrm{s}) \rightarrow \mathrm{K}(\mathrm{g})$, at $25^{\circ} \mathrm{C}$.
A) $\quad-345.88 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad 45.00 \mathrm{~kJ} / \mathrm{mol}$
D) $89.99 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-525.86 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 345.88 \mathrm{~kJ} / \mathrm{mol}$

Ans: D Category: Medium Section: 6.6
56. At $25^{\circ} \mathrm{C}$, the standard enthalpy of formation of anhydrous sodium carbonate is -1130.9 $\mathrm{kJ} / \mathrm{mol}$, whereas the standard enthalpy of formation of sodium carbonate monohydrate is $-1430.1 \mathrm{~kJ} / \mathrm{mol}$. Determine $\Delta \mathrm{H}^{\circ}$ at $25^{\circ} \mathrm{C}$ for the reaction
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$.
(Given: $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$)
A) $\quad-13.4 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-285.8 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-585.0 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-299.2 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-156.3 \mathrm{~kJ} / \mathrm{mol}$

Ans: A Category: Medium Section: 6.6
57. According to the first law of thermodynamics:
A) Energy is neither lost nor gained in any energy transformations.
B) Perpetual motion is possible.
C) Energy is conserved in quality but not in quantity.
D) Energy is being created as time passes. We have more energy in the universe now than when time began.
Ans: A Category: Easy Section: 6.3
58. The heat of solution of KCl is $17.2 \mathrm{~kJ} / \mathrm{mol}$ and the lattice energy of $\mathrm{KCl}(\mathrm{s})$ is 701.2 $\mathrm{kJ} / \mathrm{mol}$. Calculate the total heat of hydration of 1 mol of gas phase K^{+}ions and Cl ions.
A) 718 kJ
B) 684 kJ
C) -684 kJ
D) -718 kJ
E) None of these.

Ans: C Category: Medium Section: 6.7
59. The heat of solution of LiCl is $-37.1 \mathrm{~kJ} / \mathrm{mol}$, and the lattice energy of $\mathrm{LiCl}(\mathrm{s})$ is 828 $\mathrm{kJ} / \mathrm{mol}$. Calculate the total heat of hydration of 1 mol of gas phase Li^{+}ions and $\mathrm{Cl}^{\text {ions }}$ ions.
A) 791 kJ
B) 865 kJ
C) -865 kJ
D) -791 kJ
E) None of these.

Ans: C Category: Medium Section: 6.7
60. The total heat of hydration of 1 mol of gas phase Li^{+}ions and Cl^{-}ions is -865 kJ . The lattice energy of $\mathrm{LiCl}(\mathrm{s})$ is $828 \mathrm{~kJ} / \mathrm{mol}$. Calculate the heat of solution of LiCl .
A) $37 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-37 \mathrm{~kJ} / \mathrm{mol}$
B) $1,693 \mathrm{~kJ} / \mathrm{mol}$
E) None of these.
C) $\quad-1,693 \mathrm{~kJ} / \mathrm{mol}$

Ans: D Category: Medium Section: 6.7
61. 10.1 g CaO is dropped into a styrofoam coffee cup containing $157 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $18.0^{\circ} \mathrm{C}$.

If the following reaction occurs, then what temperature will the water reach, assuming that the cup is a perfect insulator and that the cup absorbs only a negligible amount of heat? (the specific heat of water $=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$)
$\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-64.8 \mathrm{~kJ} / \mathrm{mol}$
A) $18.02^{\circ} \mathrm{C}$
B) $35.8^{\circ} \mathrm{C}$
C) $311^{\circ} \mathrm{C}$
D) $42.2^{\circ} \mathrm{C}$
E) $117^{\circ} \mathrm{C}$

Ans: B Category: Medium Section: 6.5
62. The enthalpy change when a strong acid is neutralized by strong base is $-56.1 \mathrm{~kJ} / \mathrm{mol}$. If 135 mL of 0.450 M HI at $23.15^{\circ} \mathrm{C}$ is mixed with 145 mL of 0.500 M NaOH , also at $23.15^{\circ} \mathrm{C}$, what will the maximum temperature reached by the resulting solution? (Assume that there is no heat loss to the container, that the specific heat of the final solution is 4.18 $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, and that the density of the final solution is that of water.)
A) $26.06^{\circ} \mathrm{C}$
B) $29.19^{\circ} \mathrm{C}$
$\begin{array}{lll}\text { C) } 32.35^{\circ} \mathrm{C} & \text { D) } 20.24^{\circ} \mathrm{C}\end{array}$
E) $36.57^{\circ} \mathrm{C}$

Ans: A Category: Difficult Section: 6.5
63. The enthalpy change when a strong acid is neutralized by strong base is $-56.1 \mathrm{~kJ} / \mathrm{mol}$. If 12.0 mL of 6.00 M HBr at $21.30^{\circ} \mathrm{C}$ is mixed with 300 . mL of 0.250 M NaOH , also at $21.30^{\circ} \mathrm{C}$, what will the maximum temperature reached by the resulting solution? (Assume that there is no heat loss to the container, that the specific heat of the final solution is 4.18 $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, and that the density of the final solution is that of water.)
A) $18.20^{\circ} \mathrm{C}$
B) $24.53^{\circ} \mathrm{C} \quad$ C) $101.8^{\circ} \mathrm{C}$
D) $24.40^{\circ} \mathrm{C}$
E) $34.25^{\circ} \mathrm{C}$

Ans: D Category: Difficult Section: 6.5
64. Calculate the amount of work done, in joules, when 2.5 mole of $\mathrm{H}_{2} \mathrm{O}$ vaporizes at 1.0 atm and $25^{\circ} \mathrm{C}$. Assume the volume of liquid $\mathrm{H}_{2} \mathrm{O}$ is negligible compared to that of vapor. (1 $\mathrm{L} \cdot \mathrm{atm}=101.3 \mathrm{~J}$)
A) $6,190 \mathrm{~kJ}$
B) 6.19 kJ
C) 61.1 J
D) 5.66 kJ
E) 518 J

Ans: B Category: Medium Section: 6.3
65. A gas is compressed in a cylinder from a volume of 20.0 L to 2.0 L by a constant pressure of 10.0 atm . Calculate the amount of work done on the system.
A) $1.01 \times 10^{4} \mathrm{~J}$
B) -180 J
C) $1.81 \times 10^{4} \mathrm{~J}$
D) $-1.81 \times 10^{4} \mathrm{~J} \quad$ E) 180 J

Ans: C Category: Medium Section: 6.3
66. Calculate the amount of work done against an atmospheric pressure of 1.00 atm when 500.0 g of zinc dissolves in excess acid at $30.0^{\circ} \mathrm{C}$.
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
A) $\quad \mathrm{w}=+22.4 \mathrm{~kJ}$
B) $\mathrm{w}=+24.9 \mathrm{~kJ}$
D) $\quad \mathrm{w}=-2.52 \mathrm{~kJ}$
E) $\quad \mathrm{w}=-19.3 \mathrm{~kJ}$
C) $\quad \mathrm{w}=0$

Ans: E Category: Medium Section: 6.3
67. A gas is allowed to expand, at constant temperature, from a volume of 1.0 L to 10.1 L against an external pressure of 0.50 atm . If the gas absorbs 250 J of heat from the surroundings, what are the values of q, w, and $\Delta \mathrm{E}$?

			\underline{w}
A.	250 J	-460 J	-210 J
B.	-250 J	-460 J	-710 J
C.	250 J	460 J	710 J
D.	-250 J	460 J	210 J
E.	250 J	-4.55 J	245 J

Ans: A
Category: Medium Section: 6.3
68. Which of the following processes always results in an increase in the energy of a system?
A) The system loses heat and does work on the surroundings.
B) The system gains heat and does work on the surroundings.
C) The system loses heat and has work done on it by the surroundings.
D) The system gains heat and has work done on it by the surroundings.
E) None of these is always true.

Ans: D Category: Medium Section: 6.3
69. For which of these reactions will the difference between $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{E}^{\circ}$ be the greatest?
A) $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
B) $\quad \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
C) $\quad \mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
D) $\quad 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
E) $\quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Ans: D Category: Medium Section: 6.4
70. For which of these reactions will the difference between $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{E}^{\circ}$ be the smallest?
A) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B) $4 \mathrm{PH}_{3}(\mathrm{~g}) \rightarrow \mathrm{P}_{4}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g})$
C) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
D) $\quad \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
E) $\quad \mathrm{P}_{4}(\mathrm{~s})+10 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{5}(\mathrm{~s})$

Ans: C Category: Medium Section: 6.4
71. At $25^{\circ} \mathrm{C}$, the following heats of reaction are known:
$2 \mathrm{ClF}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(\mathrm{g})+\mathrm{F}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=167.4 \mathrm{~kJ} / \mathrm{mol}$
$2 \mathrm{ClF}_{3}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{~F}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=341.4 \mathrm{~kJ} / \mathrm{mol}$
$2 \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~F}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-43.4 \mathrm{~kJ} / \mathrm{mol}$
At the same temperature, use Hess's law to calculate $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the reaction:
$\mathrm{ClF}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{ClF}_{3}(\mathrm{~g})$
A) $\quad-217.5 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-130.2 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-108.7 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 465.4 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 217.5 \mathrm{~kJ} / \mathrm{mol}$

Ans: D Category: Medium Section: 6.6
72. The bond enthalpy of the $\mathrm{Br}-\mathrm{Cl}$ bond is equal to $\Delta \mathrm{H}^{\circ}$ for the reaction $\mathrm{BrCl}(\mathrm{g}) \rightarrow \mathrm{Br}(\mathrm{g})+\mathrm{Cl}(\mathrm{g})$.
Use the following data to find the bond enthalpy of the $\mathrm{Br}-\mathrm{Cl}$ bond.

$\mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}^{\circ}=30.91 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Br}(\mathrm{g})$	$\Delta \mathrm{H}^{\circ}=192.9 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{g})$	$\Delta \mathrm{H}^{\circ}=243.4 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Br}_{2}(\mathrm{l})+\mathrm{Cb}(\mathrm{g}) \rightarrow 2 \mathrm{BrCl}(\mathrm{g})$	$\Delta \mathrm{H}^{\circ}=29.2 \mathrm{~kJ} / \mathrm{mol}$

A) $\quad 219.0 \mathrm{~kJ} / \mathrm{mol}$
B) $203.5 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad 438.0 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 407.0 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 14.6 \mathrm{~kJ} / \mathrm{mol}$

Ans: A Category: Medium Section: 6.6
73. The heat of solution of ammonium nitrate is $26.2 \mathrm{~kJ} / \mathrm{mol}$. If a 5.368 g sample of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is added to 40.0 mL of water in a calorimeter at $23.5^{\circ} \mathrm{C}$, what is the minimum temperature reached by the solution? (The specific heat of water $=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; the heat capacity of the calorimeter $=650 . \mathrm{J} /{ }^{\circ} \mathrm{C}$.)
A) $14.3^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { B) } 20.8^{\circ} \mathrm{C} & \mathrm{C}) \\ -7.7^{\circ} \mathrm{C}\end{array}$
D) $25.6^{\circ} \mathrm{C}$
E) $21.4^{\circ} \mathrm{C}$

Ans: E Category: Difficult Section: 6.5
74. The heat of solution of ammonium chloride is $15.2 \mathrm{~kJ} / \mathrm{mol}$. If a 6.134 g sample of $\mathrm{NH}_{4} \mathrm{Cl}$ is added to 65.0 mL of water in a calorimeter at $24.5^{\circ} \mathrm{C}$, what is the minimum temperature reached by the solution? (The specific heat of water $=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; the heat capacity of the calorimeter $=365 . \mathrm{J} /{ }^{\circ} \mathrm{C}$.)
A) $27.1^{\circ} \mathrm{C}$
B) $18.6^{\circ} \mathrm{C}$
C) $19.7^{\circ} \mathrm{C}$
D) $21.9^{\circ} \mathrm{C}$
E) $30.4^{\circ} \mathrm{C}$

Ans: D Category: Difficult Section: 6.5
75. Aluminum oxide can be reduced to aluminum metal using carbon, the other reaction product being carbon monoxide. Determine the enthalpy change when 12.5 g of aluminum is produced by this method. $\left[\Delta \mathrm{H}^{\circ}(\right.$ carbon monoxide $)=-110.5 \mathrm{~kJ} / \mathrm{mol}$; $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}($ aluminum oxide $\left.)=-1669.8 \mathrm{~kJ} / \mathrm{mol}\right]$
A) 725 kJ
B) $697 \mathrm{~kJ} \quad$ C) 310 kJ
D) 361 kJ
E) 1504 kJ

Ans: C Category: Difficult Section: 6.6
76. Ozone $\left(\mathrm{O}_{3}\right)$ in the atmosphere can be converted to oxygen gas by reaction with nitric oxide (NO). Nitrogen dioxide is also produced in the reaction. What is the enthalpy change when 8.50 L of ozone at a pressure of 1.00 atm and $25^{\circ} \mathrm{C}$ reacts with 12.00 L of nitric oxide at the same initial pressure and temperature? $\left[\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}(\mathrm{NO})=90.4 \mathrm{~kJ} / \mathrm{mol}\right.$;
$\left.\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{NO}_{2}\right)=33.85 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\left(\mathrm{O}_{3}\right)=142.2 \mathrm{~kJ} / \mathrm{mol}\right]$
A) -69.2 kJ
B) -19.7 kJ
C) -1690 kJ
D) -97.6 kJ
E) -167 kJ

Ans: A Category: Difficult Section: 6.6
77. Define specific heat.

Ans: The amount of heat required to raise the temperature of one gram of a substance by one degree Celsius.
Category: Easy Section: 6.5
78. How many grams of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ would have to be burned to produce 450 kJ of heat?
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-1411 \mathrm{~kJ} / \mathrm{mol}$
Ans: 8.95 g
Category: Medium Section: 6.4
79. Calculate the enthalpy of reaction for $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$.
$\left[\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right)=52.3 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})\right)=-84.7 \mathrm{~kJ} / \mathrm{mol}\right]$
Ans: $-137 \mathrm{~kJ} / \mathrm{mol}$
Category: Medium Section: 6.6
80. The enthalpy of combustion of acetylene $\mathrm{C}_{2} \mathrm{H}_{2}$ is described by
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+(5 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-1299 \mathrm{~kJ} / \mathrm{mol}$
Calculate the enthalpy of formation of acetylene, given the following enthalpies of formation
$\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$
Ans: $226 \mathrm{~kJ} / \mathrm{mol}$
Category: Medium Section: 6.6
81. Given the following $\Delta \mathrm{H}^{\circ}$ values,
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-285.8 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=187.6 \mathrm{~kJ} / \mathrm{mol}$
calculate $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the reaction $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$,
Ans: $-98.2 \mathrm{~kJ} / \mathrm{mol}$
Category: Medium Section: 6.6
82. The heat of solution of calcium chloride CaCl_{2} is $-82.8 \mathrm{~kJ} / \mathrm{mol}$, and the combined heats of hydration of 1 mole of gaseous calcium ions and 2 mole of gaseous chloride ions is 2327 kJ . What is the lattice energy of calcium chloride?
Ans: $2,244 \mathrm{~kJ} / \mathrm{mol}$
Category: Medium Section: 6.7
83. The heat of solution of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is $26.2 \mathrm{~kJ} / \mathrm{mol}$. Is heat evolved or absorbed when a solution of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is diluted by addition of more water?
Ans: Absorbed
Category: Easy Section: 6.7
84. A 26.2 g piece of copper metal is heated from $21.5^{\circ} \mathrm{C}$ to $201.6^{\circ} \mathrm{C}$. Calculate the amount of heat absorbed by the metal. The specific heat of Cu is $0.385 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
Ans: 1,820 J
Category: Medium Section: 6.5
85. A 0.1946 g piece of magnesium metal is burned in a constant-volume calorimeter that has a heat capacity of $1349 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. The calorimeter contains 500 . g of water and the temperature rise is $1.40^{\circ} \mathrm{C}$. Calculate the heat of combustion of magnesium metal in kJ / g, given that the specific heat of water $=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
Ans: $24.8 \mathrm{~kJ} / \mathrm{g}$
Category: Medium Section: 6.5
86. A 0.3423 g sample of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$, was burned in a bomb calorimeter. The temperature of the calorimeter and the 1.000 kg of water contained therein rose from $20.22^{\circ} \mathrm{C}$ to $22.82^{\circ} \mathrm{C}$. The heat capacity of the calorimeter is $2.21 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. The heat capacity of water $=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. How much heat was given off during combustion of the sample of pentane?
Ans: 16.6 kJ
Category: Medium Section: 6.5
87. A 0.3423 g sample of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$, was burned in a bomb calorimeter. The temperature of the calorimeter and the 1.000 kg of water contained therein rose from $20.22^{\circ} \mathrm{C}$ to $22.82^{\circ} \mathrm{C}$. The heat capacity of the calorimeter is $2.21 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. The heat capacity of water $=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. What is the heat of combustion, in kilojoules, per gram of pentane?
Ans: 48.6 kJ/g
Category: Medium Section: 6.5
88. A 0.3423 g sample of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$, was burned in a bomb calorimeter. The temperature of the calorimeter and the 1.000 kg of water contained therein rose from $20.22^{\circ} \mathrm{C}$ to $22.82^{\circ} \mathrm{C}$. The heat capacity of the calorimeter is $2.21 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. The heat capacity of water $=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. What is the heat of combustion, in megajoules (MJ), per mole of pentane?
Ans: $3.50 \mathrm{MJ} / \mathrm{mol}$
Category: Medium Section: 6.5
89. The heat of combustion of propane, $\mathrm{C}_{3} \mathrm{H}_{8}, 2220 \mathrm{~kJ} / \mathrm{mol}$. The specific heat of copper is $0.385 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. How many grams of propane must be burned to raise the temperature of a 10.0 kg block of copper from $25.0^{\circ} \mathrm{C}$ to $65.0^{\circ} \mathrm{C}$, assuming none of the heat is lost to the surroundings
Ans: 3.06 g
Category: Medium Section: 6.5
90. The residential rate for natural gas is about $\$ 15$ per thousand cubic foot. Burning one cubic foot of natural gas releases about 1080 kJ of heat. How much would it cost to heat the water in a 25,000 gallon swimming pool from $52^{\circ} \mathrm{F}$ to $78^{\circ} \mathrm{F}$, assuming all of the heat from burning the natural gas went towards warming the water? ($1 \mathrm{gal}=3.785 \mathrm{~L}$; the specific heat of water $=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$)
Ans: \$79
Category: Difficult Section: 6.5
91. The heat of neutralization of HCl by NaOH is $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-56.2 \mathrm{~kJ} / \mathrm{mol}$. How much heat is released when 125 mL of 1.750 M HCl is mixed with 195 mL of 0.667 M NaOH ?
Ans: 7.31 kJ
Category: Difficult Section: 6.5
92. The heat released when one mole of water is formed from the elements is $1,198 \mathrm{~kJ}$. An experiment was conducted that permitted water to form in this manner, and the heat was contained in 2.0 liters of water. The water temperature before the reaction was $34.5^{\circ} \mathrm{C}$, and after the reaction it had risen to $52.0^{\circ} \mathrm{C}$. How many moles of water were formed? (The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.)
Ans: 0.12 mole
Category: Medium Section: 6.5
93. When an automobile engine starts, the metal parts immediately begin to absorb heat released during the combustion of gasoline. How much heat will be absorbed by a 165 kg iron engine block as the temperature rises from $15.7^{\circ} \mathrm{C}$ to $95.7^{\circ} \mathrm{C}$? (The specific heat of iron is $0.489 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.)
Ans: $6,450 \mathrm{~kJ}$
Category: Medium Section: 6.5
94. The value of $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the following reaction is $-6535 \mathrm{~kJ} / \mathrm{mol}$.
$2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
How many kilojoules of heat will be evolved during the combustion of 16.0 g of $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})$?
Ans: 669 kJ
Category: Medium Section: 6.4
95. What would be the standard enthalpy change for the reaction of one mole of $\mathrm{H}_{2}(\mathrm{~g})$ with one mole of $\mathrm{Cb}(\mathrm{g})$ to produce two moles of $\mathrm{HCl}(\mathrm{g})$ at standard state conditions?
$\left[\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{HCl}(\mathrm{g}))=-92.3 \mathrm{~kJ} / \mathrm{mol}\right]$
Ans: -185 kJ
Category: Medium Section: 6.6
96. What is the standard enthalpy of formation of $\mathrm{H}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$?

Ans: $0 \mathrm{~kJ} / \mathrm{mol}$
Category: Easy Section: 6.6
97. Find $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the reaction
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
$\left[\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{CH}_{4}(\mathrm{~g})\right)=-74.8 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=-393.5 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=-285.5\right.$
$\mathrm{kJ} / \mathrm{mol}]$
Ans: $-889.7 \mathrm{~kJ} / \mathrm{mol}$
Category: Medium Section: 6.6
98. Find $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the reaction
$2 \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{Ag}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$.
$\left[\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})\right)=-32.6 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\right)=-20.5 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=-285.5\right.$
$\mathrm{kJ} / \mathrm{mol}$]
Ans: $595.2 \mathrm{~kJ} / \mathrm{mol}$
Category: Medium Section: 6.6
99. Find $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the reaction
$2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+2 \mathrm{H}_{2}(\mathrm{~g})$.
$\left[\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{NaOH}(\mathrm{aq}))=-426.8 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=-285.5 \mathrm{~kJ} / \mathrm{mol}\right]$
Ans: -282.6 kJ
Category: Medium Section: 6.6
100. The specific heat of silver is $0.235 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. How many joules of heat are required to heat a 75 g silver spoon from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$?
Ans: 260 J
Category: Easy Section: 6.5
101. At body temperature 2,404 joules of energy are required to evaporate 1.00 g of water. After vigorous exercise, a person feels chilly because the body is giving up heat to evaporate the perspiration. A typical person perspires 25 mL of water after 20. minutes of exercise. How much body heat is this person using to evaporate this water?
Ans: 6.0×10^{4} J
Category: Easy Section: 6.4
102. The combustion of one mole of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, in oxygen liberates 3268 kJ of heat. The products of the reaction are carbon dioxide and water. How much heat is given off when 183 g of oxygen are reacted with excess benzene?
Ans: 2490 kJ
Category: Difficult Section: 6.4
103. A feverish student weighing 75 kilograms was immersed in $400 . \mathrm{kg}$ of water at $4.0^{\circ} \mathrm{C}$ to try to reduce the fever. The student's body temperature dropped from $40.0^{\circ} \mathrm{C}$ to $37.0^{\circ} \mathrm{C}$. Assuming the specific heat of the student to be $3.77 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, what was the final temperature of the water?
Ans: $4.5^{\circ} \mathrm{C}$
Category: Difficult Section: 6.5
104. The specific heats of water and iron are 4.184 and $0.444 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, respectively. When equal masses of water and iron both absorb the same amount of heat, the temperature increase of the water will be 5.42 times greater than that of the iron.
Ans: True Category: Medium Section: 6.5
105. Chemical reactions in a bomb calorimeter occur at constant pressure.

Ans: True Category: Easy Section: 6.5
106. If $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s}), \Delta \mathrm{H}^{\circ}=-1203.6 \mathrm{~kJ} / \mathrm{mol}$.

For $\mathrm{Mg}(\mathrm{s})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$, the enthalpy change is $\Delta \mathrm{H}=-601.8 \mathrm{~kJ} / \mathrm{mol}$.
Ans: True Category: Easy Section: 6.6
107. The heat capacity of 20.0 g of water is $83.7 \mathrm{~J} /{ }^{\circ} \mathrm{C}$.

Ans: True Category: Medium Section: 6.5
108. The work done on the surroundings by the expansion of a gas is $w=-\mathrm{P} \Delta \mathrm{V}$.

Ans: True Category: Easy Section: 6.3
109. The heat absorbed by a system at constant pressure is equal to $\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$.

Ans: True Category: Easy Section: 6.4
110. In an endothermic process, heat is absorbed by the system.

Ans: True Category: Easy Section: 6.2
111. A home aquarium is an example of an open system.

Ans: True Category: Easy Section: 6.2
112. The heat of hydration $\left(\Delta \mathrm{H}_{\mathrm{hydr}}\right)$ of ions is always endothermic.

Ans: False Category: Medium Section: 6.7

